فیزیک یازدهم

آموزش فیزیک یازدهم

فیزیک یازدهم

آموزش فیزیک یازدهم

۲ مطلب با موضوع «الکتریسیته ساکن» ثبت شده است

  • ۰
  • ۰

hkvCd ohck

وقتی صفحه های خازن دارای بار الکتریکی می شوند در خازن انرژی ذخیره می شود. برای اینکه انرژی خازن را مشاهده کنیم، کافی است دو سر یک خازن پر شده را به دو سر یک لامپ کوچک وصل کنیم. به شرط آنکه ظرفیت و اختلاف پتانسیل خازن به اندازه کافی زیاد باشد، لامپ برای مدتی روشن و سپس خاموش می شود.

اثبات فرمول محاسبه انرژی خازن

در حین شارژ شدن خازن باتری کار W=QΔV را روی بار انجام می دهد. و با توجه به افزایش اختلاف پتانسیل دو صفحه در حین شارژ شدن، به ازای انتقال هر بار باید کار بیشتری انجام شود.

ph3 enerjikhazen 01 انرژی خازن

و از آنجایی که در این فرایند ظرفیت خازن همواره ثابت می ماند و طبق رابطه V=Q/C ، اختلاف پتانسیل تابع خطی از بار Q است. بنابراین می توان مقدار متوسط اختلاف پتانسیل را به صورت زیر بدست آورد.

ph3 enerjikhazen 02 انرژی خازن

کار انجام شده برای باردار شدن کامل خازن برابر با حاصل ضرب کل بارهای جزئی منتقل شده (Q) در اختلاف پتانسیل متوسط است. یعنی :

ph3 enerjikhazen 03 انرژی خازناین کار به صورت انرژی پتانسیل الکتریکی در میدان الکتریکی فضای بین صفحه های خازن ذخیره می شود.

ph3 enerjikhazen 04 انرژی خازن

که در این رابطه U بر حسب ژول (J) و Q بر حسب کولن (c) و V بر حسب ولت (V) و C بر حسب فاراد (F) است.

مثال : خازن C=5µF را با پتانسیل V=60V شارژ و آن را از مدار جدا می سازیم.

الف) بار و انرژی ذخیره شده در خازن را بدست آورید.

ب) اگر سطح اشتراک صفحات را دو برابر و فاصله آن ها را نصف کنیم، آنگاه  ظرفیت و بارالکتریکی و اختلاف پتانسیل الکتریکی و انرژی ذخیره شده در خازن چه تغییری می کند؟

حل مثال :

ph3 enerjikhazen 05 انرژی خازن

تمرین ها

تمرین ۱: خازن تختی را پس از پر کردن از باتری جدا می کنیم، اگر در این حالت یک دی الکتریک بین دو صفحه ی آن قرار دهیم به ترتیب انرژی و اختلاف پتانسیل دو سر آن چگونه تغییر می کند؟

تمرین ۲: با تخلیه‌ی قسمتی از بار الکتریکی یک خازن پر شده، اختلاف پتانسیل دو سر آن ۸۰ درصد کاهش می‌یابد. انرژی این خازن چند درصد کاهش می‌یابد؟

تمرین ۳: ظرفیت خازنی ۱۲ میکروفاراد و بار الکتریکی آن q است. اگر ۳ میلی کولن بار مثبت را از صفحه منفی جدا کرده و به صفحه مثبت منتقل کنیم، انرژی ذخیره شده در خازن به اندازه ۸ ژول افزایش می یابد. Q را محاسبه کنید.


ویدیو آموزشی 

به ویدیو آموزشی که توسط استاد مصطفی کبیری آماده شده است، توجه کنید.

 

  • کبیر فکور
  • ۰
  • ۰

قانون کولن

دید کلی

در اواخر قرن هیجدهم علوم تجربی به درجه‌ای از رشد و پیشرفت رسیده بود که بتوان مشاهدات دقیقی درباره نیروهای میان بارهای الکتریکی به عمل آورد. نتایج این مشاهدات را که در آن زمان فوق‌العاده مجادله‌آمیز بودند، نمی‌توان به این صورت بیان نمود. دو نوع و فقط دو نوع بار الکتریکی وجود دارد که ما اینها را به نام بارهای الکتریکی مثبت و منفی می‌شناسیم. همچنین دو بار نقطه‌ای نیروهایی بر یکدیگر اعمال می‌کنند که بزرگی این نیروها با مربع فاصله بین دو بار نسبت عکس و با حاصل‌ضرب اندازه بارها نسبت مستقیم دارد. این نیرو برای بارهای همنام دافعه و در مورد بارهای غیرهمنام جاذبه است (نیروی کولن).

آنچه گفته شد به افتخار شارل آرگوستن کولن (Chorles Augustim Coulumb) که از پیشروان الکتریسیته در قرن هیجدهم بود، به نام قانون کولن معروف است.

ترازوی پیچشی کولن

کولن دستگاهی ساخت که به وسیله آن می‌توانست نیرویی را که دو ذره باردار بر یکدیگر وارد می‌کنند، اندازه بگیرد. در ترازوی کولن میله‌ای دمبل مانند قرار دارد که به دو انتهای آن کره‌های کوچکی متصل شده است. این دمبل بوسیله یک رشته که از وسط دمبل می‌گذرد، آویخته شده است. هر گاه کره باردار دیگری را به یکی از کره‌های دمبل که قبلا باردار شده است، نزدیک کنیم، بر اساس قانون کولن با توجه به نوع بارها ، این دو یکدیگر را جذب یا دفع می‌کنند، بنابراین در اثر این نیرو دمبل خواهد چرخید و رشته تاب می‌خورد. با اندازه گیری زاویه انحراف دمبل می‌توان نیروی میان دو بار الکتریکی را سنجید. کاوندیش بعدها با الهام از ترازوی پیچشی کولن وسیله‌ای ساخت که برای اندازه گیری نیروی جاذبه گرانش بکار می‌رود (ترازوی کاوندیش).

به این ترتیب قانون کولن به صورت تجربی مورد تائید واقع شد. البته لازم به ذکر است که باور ما در مورد قانون کولن ، از نظر کمی مبتنی بر تجربه‌های کولن نیست. دقت اندازه گیریهای ترازوی پیچشی کولن به زحمت از چند درصد تجاوز می‌کند. به عنوان مثال ، چنین اندازه گیریهایی نمی‌تواند ما را متقاعد سازد که در رابطه قانون کولن توان فاصله بارها از یکدیگر دقیق برابر 2 است.

گستره عمل قانون کولن

قانون کولن در مورد بارهای نقطه‌ای بکار می‌رود. از لحاظ ماکروسکوپی بار نقطه‌ای باری است که ابعاد فضایی آن در مقایسه با هر طول دیگری در مسئله مورد نظر بسیار کوچک است. قانون کولن در مورد برهمکنش‌های ذرات بنیادی ، مانند پرتونها و الکترونها نیز صادق است. در مورد دفع الکترواستاتیکی میان هسته‌ها در فواصل بیشتر از نیز این قانون صدق می‌کند، اما در فواصل کمتر نیروهای پر قدرت و کوتاه‌برد هسته‌ای عمل می‌کنند.

مشخصات قانون کولن

نیرویی که قانون کولن بیان می‌کند، به نیروی کولن معروف است. نیروی کولن بسته به نوع بارهای الکتریکی می‌تواند جاذبه یا دافعه باشد. قانون کولن یک قانون تجربی است، ولی با وجود این شواهد تجربی و نظری هر دو نشان می‌دهند که قانون عکس مجذور فاصله‌ای کولن دقیق است. آنچه قانون کولن بیان می‌کند، یک رابطه تناسبی است. با ضرب کردن طرف دوم در یک ثابت تناسب این رابطه تناسبی به یک تساوی تبدیل می‌شود. مقدار ثابت تناسب بستگی به دستگاه یکایی دارد که مورد استفاده قرار می‌گیرد.

به عنوان مثال ، در سیستم یکای گاوسی این مقدار ثابت را برابر یک فرض می‌کنند و یکای بار الکتریکی را به گونه‌ای انتخاب می‌کنند که رابطه با تجربه سازگار باشد. اما دستگاه SI که بار الکتریکی را بر حسب کولن ، فاصله را بر حسب متر و نیرو را بر حسب نیوتن بیان می‌کنند، ثابت تناسب باید کمیتی باشد که دارای بعد است. بوسیله آزمایشهای تجربی مقدار این ثابت تناسب بصورت زیر محاسبه می‌شود:
 



در بعضی از موارد به منظور ساده‌تر کردن محاسبه به جای مقدار فوق عبارت به ظاهر پیچیده را قرار می‌دهند که در آن کمیتی است که به عنوان ضریب گذردهی الکتریکی خلا معروف است و مقدار عددی آن برابر است.

برای حل مثال و تمرین از قانون کولن کلیک کنید.

اهمیت قانون کولن

مفهوم قانون کولن فراتر از توصیف نیروهای میان کره‌های باردار است. این قانون می‌تواند در فیزیک کوانتومی نیروهای الکتریکی که الکترونهای یک اتم را به هسته آن پیوند می‌دهد، نیروهایی که اتمها را به هم پیوند می‌دهند تا مولکول تشکیل شود و نیروهایی که برای تشکیل جامدات ، مایعات ، اتمها یا مولکولها را به هم پیوند می‌دهند، را به درستی توصیف کند. از این رو بیشتر نیروهایی که در زندگی روزمره خود با آنها سر و کار داریم، گرانشی نیستند، بلکه الکتریکی هستند.

در هسته اتم نیروی جدیدی وجود دارد که نه دارای ماهیت گرانشی است و نه الکتریکی. این نیروی جاذبه قوی که پروتونها و نوترونهای تشکیل دهنده هسته را به هم پیوند می‌دهد، نیروی هسته‌ای یا برهمکنش قوی هسته‌ای نام دارد. اگر این نیرو وجود نداشت، هسته در اثر نیروی دافعه کولنی قوی میان پروتونهای آن به یکباره متلاشی می‌شد.

منبع: دانشنامه رشد

  • کبیر فکور